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Theoretical Scheme for the
Development of PD

g

S
1

T

=

[
L=
I

Percent of maximum No. of Dopamine Neurones



Grafts of Fetal Dopamine Neurons Survive and
Improve Motor Function in Parkinson’s Discase
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Fetal nigral transplantation currently cannot be
recommended as a therapy for PD based on these results



Many years later...

Conclusion: These results suggest that clinical benefit and
graft viability are sustained up to 4 y after transplantation.
Moreover, the dependence of clinical (but not imaging)
outcomes on subject age and sex at 1 y may not persist over the
long term. Last, the imaging changes reliably correlate with
clinical outcome over the entire posttransplantation time
course.










Fetal transplantation - Conclusions

Human fetal mesencephalic dopaminergic neurons survive

transplantation into the brain of Parkinson’s patients (11 papers)

The grafts can survive despite an ongoing disease process, unaltered by

continuous anti-parkinsonian drug treatment

Histopathological analyses have confirmed survival of the dopaminergic

grafts and demonstrated their ability to reinnervate the striatum.
These grafts can restore regulated release of dopamine in the striatum

The transplanted fetal cells can become functionally integrated into

existing neural networks of the PD patient



Fetal mesencephalic cells- problems

very low yield of dopaminergic cells
very low tissue availability

no proven efficacy in controlled trials

Freed et al, NEJM 2001; Olanow et al, Ann Neurol 2003

“off- medication” dyskinesia- a serious side- effect



Stem Cell Replacement Therapy in PD

Adult cells
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Stem Cell Replacement Therapy in PD



Cells used for in PD

Utilization of ESC, IPS, iN and fetal NSC is
accompanied by a lot of ethical and unpractical

considerations

Adult stem cells are safe and easy access stem cells
sources for the development of cell therapies in PD



Bone Marrow Adipose Tissue

Sources of Mesenchymal Stem Cell

Amniotic Fluid

Placenta

Dental Pulp Cord Blood



Stem cells differentiation

LifeMap Discovery™



New source for neural cells

Distance from MSC to neurons

Distance from hOMSC to neurons

LifeMap Discovery™



Oral Mucosa, heals by regeneration
without scar formation — age independent
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Human Oral Mucosa Stem Cells (hOMSC)

Stem CELLS
Tissue-SeeciFic STEM CELLS

The Lamina Propria of Adult Human Oral Mucosa Harbors a
Novel Stem Cell Population

KEREN MARYNKA-KALMANL® Savora TREVES.® Migt YAree,® HELED RacHiva,” Yosst GaFnt,®
MaLkIEL A. CoHEN.S Saxpy Prrary®

*Department of Oral Biology, School of Dental Medicine Faculty of Medicine, Tel Aviv University, Tel Aviv;

(1)hOMSC niche is accessible
@easily obtained by non-invasive procedures
@potential doesn’t decrease with age

@abundant =] | availability (trillions in small biopsies)




The neural crest is the origin of the oral mucosa

e Oral opitholum

— Basement membrane

— | amina propa

‘Sub-mucosa’
O — cOMtains blood vesse’s

O and NErves

Kaltschmidt et al. 2011



Pluripotent marker expression

Negligibly affected by donors’ age

Elder

Marynka-Kalmani et al.



The oral mucosa express pluripotency and
neural crest markers




Our aim

Differentiate hOMSC to
dopaminergic-like neurons

for cell replacement in mice
model of PD



Basal state hOMSC, revealed a specific set of
neuronal and dopaminergic markers

Neuronal Markers Dopaminergic Markers

Undifferentiated hOMSC Undifferentiated hOMSC  Midbrain primary culture

Sinapsin

Cell percentage (%)




Dopaminergic differentiation protocol

hOMSC hOMSC-DA

15 days

SHH
FGF-2
FGF-8
Wntl
BDNF

N2




hOMSC after differentiation show neural-like morphology




hOMSC after differentiation show neural-like morphology
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DA phenotype was induced after differentiation

Pluripotent markers Neuronal marker

B-tubulin
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hOMSC after differentiation show neural-like morphology



Dopaminergic transcription factors increase and
nuclear translocation
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Dopaminergic transcription factors increase and
nuclear translocation



Mature dopaminergic markers
(TH and PITX3) increase after differentiation




Mature dopaminergic markers
(TH and PITX3) increase after differentiation
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Mature dopaminergic markers
(TH and PITX3) increase after differentiation
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Induced hOMSC show a mature dopaminergic-
like phenotype in vitro



Regulated dopamine release after differentiation

Dopamine release measured by HPLC
Cells incubated in HBSS (6mL) with or without KCl for 35 min



6-OHDA Parkinson’s Disease Rat Model

Healthy injured
Striatum Striatum

T~ .

Striatum

Injured

Substantia Nigra b~ 6-OHDA

Medial Forebrain Bundle




Transplanted DA-hOMSC improve behavioral
parameters in a rat model of PD:
Amphetamine induced-rotations
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Transplanted DA-hOMSC improve behavioral
parameters in a rat model of PD: Cylinder Test
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Transplanted DA-hOMSC improve behavioral
parameters in a rat model of PD: Rotor-Rod
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TH detection in the affected striatum 10 weeks post-
transplantation

TH

Saline Merge

hOMSC

hOMSC-DA -

Healthy striatum Injured striatum



Increased DA levels 10 weeks after transplantation

Dopamine

Healthy Saline hOMSC E& hOMSC-DA



Summary



Challenges
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